
CSC2231 Project Proposal 
 

SnowFlock-Aware Hadoop Implementation 
(http://www.cs.toronto.edu/~mjulia/CSC2231Project/SnowFlockAwareHadoop.html) 

 
Shahan Khatchadourian and Julia Rubin 

 
MapReduce [1] is a framework for data-intensive distributed computing of batch jobs. It allows 

programmers to think in a data-centric fashion: they focus on applying transformations to sets of data 
records, and allow the details of distributed execution, network communication and fault tolerance to be 
handled by the MapReduce framework. The MapReduce framework became prevalent due to its simplicity 
as a cloud programming model.   

Hadoop, a popular implementation of the MapReduce framework [2], is commonly installed on a shared 
hardware controlled by virtual machine monitors (Cluster Setup Hadoop installation [3]). Such installations 
require identification and configuration of all machines in the cluster upfront. Adding a new machine to the 
cluster involves additional installation steps performed by a cloud administrator – a process that might take 
significant time (“minutes”, according to [4]). Additionally, a job's configuration needs to be updated and 
may require the job itself to be restarted. 

While Hadoop does not provide a way to immediately provision additional machines as needed, it allows 
controlling cluster machines utilization by providing explicit configuration options which control the 
number of spawned map and reduce steps for each job. Enhancing Hadoop with an explicit control over the 
number of virtual machines that are available to each job can provide even better machines utilization and, 
at the same time, decreased processing time, without the need to modify Hadoop command that the users 
are experienced with. Towards this end, we propose to integrate Hadoop with SnowFlock [5] – a system 
that allows Xen virtual domains to be cloned into impromptu clusters in a matter of sub-seconds.  

An application that has been designed to work in the SnowFlock environment can expand its processing 
footprint in sub-second time, and then reduce it again when the computation is finished. We plan to 
enhance the Hadoop MapReduce implementation with the ability to efficiently expand the computing 
footprint to the number of desired processors in a dynamic manner. Required HDFS support will be 
explored as well. We plan to evaluate our implementation by comparing the performance of the extended 
Hadoop system to the original one. We will also evaluate the processing time of the proposed dynamic 
allocation of virtual machines. 

We propose the following tentative list of milestones: 

M1. Install Hadoop on a SnowFlock-based virtualized environment. 
M2. Implement a Java wrapper for the SnowFlock Python or C APIs. 
M3. Identify modification required to extend the Apache Hadoop code with the ability to dynamically  
        allocate virtual machines.  
M4. Implement the identified extensions. 
M5. Identify the applications to be used for performance measurements. We aim at benchmarking common  
        MapReduce use-cases, such as tuple selection in the map step and aggregation in the reduce step.  
M6. Execute identified tests and analyze the results.  
 
Refrences: 
[1] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified data processing on large clusters. In OSDI  
     (2004). 
[2] Apache Hadoop MapReduce Project. http://hadoop.apache.org/mapreduce 
[3] Apache Hadoon Cluster Setup. http://hadoop.apache.org/common/docs/current/cluster_setup.html 
[4] Amazon Elastic Compute Cloud Developers Guide.  
      http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/ 
[5] LAGAR-CAVILLA, H. A., WHITNEY, J. A., SCANNELL, A., PATCHIN, P., RUMBLE, S. M., DE  
      LARA, E., BRUDNO, M., AND SATYANARAYANAN, M. SnowFlock: Rapid Virtual Machine  
      Cloning for Cloud Computing. In Eurosys 2009. 


